
Python Summer School 1

🐍
Python Summer School

Created

Property

Tags

Updated

Basics of Python programing through
Hydrology
You wanted to learn codding, but had no idea where and how to
start? Then this guide is exactly for you!
This script will help you getting started with Python programing with interesting
examples from Hydrology and Meteorology. It is meant to be both a simple
programming tutorial and a motivational letter with the goal of improving your skills.
My idea is that it's easier to understand some concept if you can visualize it, and
what is a better example than the weather or some daily phenomena we encounter
each day. 🙂

Chapter 1. - How to start programming with
Python?

May 4, 2021 759 AM

Jun 1, 2021 744 AM

Python Summer School 2

What is Python? According to it's creator, Guido van Rossum:

"high-level programming language, and its core design philosophy is all about code
readability and a syntax which allows programmers to express concepts in a few
lines of code."

First we will take a look how easily to setup an environment for Python programing,
and then some basic concepts where and how to start. First, what is an
environment?

According to a Quora question, "The environment is quite literally everything
installed on your machine which can affect either the development and or testing
of your application", it includes:

editors/IDEs (software where u can write and/or run the code)

compilers/interpreters

operating system installed on your machine

environment variables set on your machine

extra libraries installed on your machine etc.

In an ideal case, the environment should be as simple as possible with only the
needed libraries installed, and only the versions of the compiler/interpreter that
you are using.

So, how we setup an environment? Well, in my opinion, it's best to download the
Anaconda (or Miniconda if you have limited space or and older PC. Simply by
following the guide on the website you get everything (and even more 😉) than you
need to start programming. Basically, after downloading Anaconda we install it as
any other application. After the installation is complete, we get the Anaconda
Navigator app. It's an easy to use interface where we can manage our programing
environments, install libraries, start an IDE etc.

Creating the environment

Before we start with programing, we will create an environment. We can do it two
ways: through the Navigator or through an Anaconda prompt.

https://www.quora.com/What-is-the-programming-environment
https://www.anaconda.com/
https://docs.conda.io/en/latest/miniconda.html

Python Summer School 3

The first way is through the Navigator. When we start the app in the left column we
select the "Environments" tab. As I have already have some environments, my list is
not empty. On a fresh install you only have the base environment. Second, you
select "create", we type in a name we like, i.e. "Learning_Python" and we select the
Python version we want, here we have selected Python 3.8.

The other way is through the Anaconda prompt.

First we run an Anaconda prompt, we can do it by searching for it in Start menu.
After prompted we need to enter following command:

conda create -n Python_Learning python=3.8

Conda create is the command to create a new environment, after -n we specify the
name, and we can choose the python version, if desired, here I've chosen version
3.8. When prompted, we type y to procced. Then we activate the new environment
by typing:

conda activate Python_Learning

We have now successfully activated out new python environment.

Python Summer School 4

My opinion is that you shouldn't care to much about the editor (or IDE you are
going to use, since at this point, it's pretty much irrelevant. Everybody encountered
this situation, when you need to start with something new, I made the mistake of
to much thinking and researching what IDE to use, instead of just start typing code.
Believe me, when you get to the level that the IDE matters to you, you will figure
out by yourself which one to use, you certainly don't need me to tell you. 🙂

For start let's stick with Jupyter Notebooks.

Jupyter Notebook
To learn the basic stuff I would suggest you to start with Jupyter Notebooks. It's
basically a web application that allows writing and running code from so called
code cells. First we will run Jupyter Notebooks. To do so we have two ways:

Navigator

First we select the new environment, then we install Jupyter, either Lab and
Notebooks, or just Notebooks. U can safely hit Notebook. (the lower left option)
After the installation is done, we just hit Launch under Jupyter Notebook. A new
tab opens up in our browser. To start a new notebook, we just select "New" in the
upper right corner, and "Python 3". This opens a new notebook in the next browser
tab.

Prompt

Python Summer School 5

To install the Notebook through the prompt, after creating the environment and
activating it, we type the following command:

conda install -c conda-forge notebook

We hit enter, the Y to accept and it's done. 🙂

We type:

jupyter notebook

A new tab opens up in our browser. To start a new notebook, we just select "New"
in the upper right corner, and "Python 3". This opens a new notebook in the next
browser tab.

Now we can start to learn coding with Python 🙂

The first command we will learn is called print. As the name suggests it's used to
print out, either a sentence or an variable for instance. Let's try it out! Type the
following in the first cell:

print("Today is a cold day!")

We run the cell by hitting: Shift+Enter, or by clicking either the “Play” button the
toolbar, or Cell, Run in the menu bar. The important thing here is that if we want to
print out a sentence (string) we need to use quotation marks. They mark the start
and the end of the string.

Last, but not least, it's worth mentioning, that in Jupyter Notebook, you can
change the type of each cell. It's great for using explanations, or divide your code
into chunks. To do so you select markdown option, and the cell turns in plain text
editor, like notepad++ or MS Word. We can type an explanation or subtitle of this
part of the notebook, and hit Shift+Enter.

Python Summer School 6

Chapter 2. - Data Types
Strings
Before we continue we have to learn what types of data we can encounter in
Python.

Above I've already mentioned strings, it is basically a sequence of characters. We
can specify a string by using single ', or double " quotes. In cases of long strings,
over two or more lines we use triple quotes """.

Let's see some examples.

print('Rain is falling.')
print("It's cold outside.")
print("""If it's very cold outside, rain can freeze
and turn into sleet or snow.""")

In the second example we can see why we use double quotes. If we had used a
single quote, the ' in "it's" had finished our string and we had an error.

This is our first error, many more will come. 🙂

Numbers
There are three types of numbers in Python: integers, floating point and complex
numbers.

In Python there is no need to define the variable type a priori, and it is allowed to
even change the data type later in the program, wherever needed.

Python Summer School 7

Here we how to print multiple variables, and the type function, which is used to
return the type of a variable.

INTegers (whole numbers) are used for indexing (more on that later) the arrays
(vector, matrix), for counting etc. FLOATs (floating point) are decimal numbers.

Variables
So what is a variable? Well, it's a container for storing data values (integers, strings,
etc). It's created the moment you first assign a value to it. Similar like in basic math,
when we say that: X equals 10

x = 10
weather = "sunny"

We declared that the variable x equals to 10. In Python we also can declare that a
variable equals a word (string). Above we declared that the variable weather
contains the string sunny.

When defining variables, some "unwritten" rules have to be followed. It's a good
practice to select a meaningful name, and to document for what this variable is
being used for.

The name can be of arbitrary length, should start with a letter, and can contain
numbers as well. If we use a variable name with multiple words, we use
underscores _. You can see an example under Lists.

Also, some of the keywords are reserved by Python, i.e., class, def, dict, or some
predefined function like print or sum etc, using those should and have to be
avoided.

Chapter 3. - Data structures
Data structures are objects that can hold more than one data entries in it. Some
examples in Python are: lists, tuples, dictionaries and sets.

Lists

Python Summer School 8

Lists are used for saving larger collections of data. List items are ordered, mutable
(changeable), and allow duplicate values. Like i.e. a list of strings, week days or a
list of floats (snow depth in centimeters), measurements of daily snow depth
during a week, so that means seven entries.

days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
daily_snow_depth = [4.5, 4.5, 4.6, 4.7, 4.9, 5.4, 6.2, 6.9]

print (daily_snow_depth)
print (days_of_week)

To declare a list in Python we use square brackets [], and divide the entries with
commas. Lists are also dynamic, which means we can add items later on if we like.

To access an item in the list we use indexing. The indices in Python start with 0. So
to access let's say the 3rd item in an list we use the number 2 as index. The index
is placed inside square brackets:

We can also access the indexes backwards, from last to the first one. In that case,
we start from 1, to access the last item, 2 second last and so on.

To add an item to a list () we use the .append() method, as follows:

daily_snow_depth.append(7.5)

As the method suggests, it adds the new item to the last place in the list.

However, if we want to add an item to a specific place, we need to use the .insert()
method. First we specify the index, then the value we want to add:

However, when inserting backwards, the indices start with 1, and it means insertin
the new value to second last place. If we wan to to add to the last place, we use

Python Summer School 9

the above shown .append() method.

To replace an item in the list we specify the desired index, and declare the new
value as follows:

Replacing works also backwards, and here the 1 index means the last place, as it
was when accessing items in the list.

Dictionaries
Dictionaries, are similar to lists, they have indices, but they can be of any type.
Tuples are mutable, but unordered and do not allow duplicates. Meaning, they can
be changed later, data can be added or removed. Here's an example:

snow_depths = {"Monday":4.5, "Tuesday":4.5, "Wednesday":4.6,
 "Thursday":4.7, "Friday":4.9, "Saturday":5.4, "Sunday":6.2}

print(snow_depths["Wednesday"])

Often the keys are used as names, for instance, a dictionary could be used to store
snow depth on a certain day. Here, I've created a dictionary called snow_depths, it
is used to store the measured snow depth on each day for one week.

To declare a dictionary we use curly brackets {}. First we enter the key, followed by
a semicolon : and then its value.

Example: "Monday": 4.5

Here, the name of the day, Monday, is a string, so we need to use quotation marks
"".

To print out the snow depth on Wednesday, instead of the index like for lists, we
enter the key Wednesday) and the function prints the value.

Tuples
A tuple is a immutable (unchangeable) and ordered sequence of values. This
means that when created (defined), we cannot change the values, or add new
ones to the tuple. A common case for using tuples are geographic coordinates of a
meteorological measuring station.

Python Summer School 10

meteo_loc = (46.28277778, 16.36388889)

print (meteo_loc)

Here we defined a tuple that contain geographical latitude and longitude of a
gauging station.

As mentioned, adding new items to the tuple is not possible.

Similar results are shown when trying to remove an item from a tuple.

Chapter 4. - Operators
Arithmetic operators
Arithmetic operators are used for basic mathematical operations, i.e. addition,
subtraction, multiplication, division, modulo operation (modulus), exponentiation
and floor division.

Let's start with addition. Its operator is the plus sign +. It adds the numbers on
either side of the sign.

Subtraction is done using the minus sign -. It subtracts the right hand operand
from left hand operand.

Python Summer School 11

Multiplication is done using the asterisk sign *. It multiplies values on either side of
the operator.

Division is done using the using the forward slash operator /. It divides the left
hand operand by right hand operand. It's important to note that even when two
integers are divided, the operation returns a float.

The modulo operation, or modulus divides left hand operand by right hand operand
and returns remainder. It's done using the percent sign %.

Exponentiation or power operation, performs exponential (power) calculation on
operators. It can be thought of as repeated multiplication. It's done suing two
asterisk signs **.

Last but not least, we have floor division. It's a division of operands where the
result is the quotient in which the digits after the decimal point are removed.

Python Summer School 12

However, if one of the operands is negative, the result is floored, i.e., rounded
away from zero (towards negative infinity).

All these examples, can also be done using variables. Here's an example for
multiplication.

Now we covered the basic of arithmetic operators, we will meet them later, in more
complex operations. But let's now see another important group of operators.

Comparison Operators
As the name suggests, they compare the values on either sides of them and
decide the relation among them. They are also called Relational operators. They
return a boolean value, or in other words, true or false. Let's jump into some
examples. We will use variables now, a will hold 14 and b will hold 23.

The equal operator checks if the two variables (or numbers) are equal. Its checked
by using two equal signs ==.

If the values of two operands are equal, then the condition becomes true. Since a
and b are not equal it returns the boolean value False. That means that the not
equal operator should return True. It's checked by using an exclamation mark and
equal sign !.

Python Summer School 13

To check if a is bigger than b we use the greater than operator >. Tt checks If the
value of left operand is greater than the value of right operand, then condition
becomes true.

Since a is not greater, it returns False.

To prove that a is smaller than b, let's use the less than operator <. It if the value
of left operand is less than the value of right operand, then condition becomes
True.

Since 14 is lower than 23, it returns True.

In addition to greater than and less than, there are greater than or equal to and
less than or equal to operators, checked with >= or <= signs, respectively. Greater
than or equal to returns True If the value of left operand is greater than or equal to
the value of right operand.

If the left hand operand is smaller than right hand operand the less than or equal
to, returns true.

Comparison operators will often be used to check if certain conditions are met, for
example in loops which will be covered later.

Python Summer School 14

Assignment Operators
Assignment operators are used in cases where we want assign a value to a
variable. We have already encountered the first assignment operator, the equal
sign =. It is used when a constant (value) is assigned to a variable.

Or we want to assign the sum of two variables, a and b, to a new variable, c.

Or, shorter written.

Similarly, we can do any other arithmetic operation mentioned above, combined
with an assignment, subtraction, multiplication, division, modulo, exponentiation
and/or floor division. Only multiplication is presented, but any other can be done
following the example.

All the mentioned operation, take the left operand, add, subtract, multiply... it with
the right operand, and assign the result to the left operand.

Logical Operators
Logical operators are used in cases where we want to combine conditional
statements. I.e., we want to check if two or more conditions are met. There are

Python Summer School 15

three logical operators, and, or and not.

The and operator returns True, if all checked conditions are True. If just one
condition is not met, it will return False.

The or operator, will return True, if at least one checked condition is True. It will
only return False, when none of the conditions is met.

Here, both conditions are False, hence the or operator returned False.

The not operator returns True if all conditions are False, or it returns False, if all
conditions are True. Or easily, we can think of it, if we wanted the opposite of the
and operator.

There are a lot more combinations possible, and I highly encourage you to try them
by yourself, since it sometimes can get confusing, and the best way is to try it out.

Bitwise Operators
Bitwise operators are used when we want to compare numbers on the binary level.
The integers are first converted to binary format and then the selected operation is
performed bit by bit. The result is returned in decimal format. The bitwise
operators are & (and), | (or), ^ (xor), ~ (not), << (zero fill left shift) and >> (signed
right shift).

Bitwise and (&) sets the bit to 1 if both bits are 1. It will be clear, when we see an
example.

Python Summer School 16

Binary value of 23 is 10111, while the binary value of 25 is 11001. So if we position
these two binary values one on top of other, we see that the first and last bit are
for both numbers, 1.

It's important to notice that a bitwise operation returns a decimal value, of the
result. And decimal value of the binary 10001 is 17.

Similarly as the logical or, the bitwise or | returns a 1 if at least one of the values is
1. Again, if we look at the binary values of 23 and 25, 10111 and 11001, respectively,
we see that, a at least one 1 appears on each position (each bit). And the decimal
value of the binary 11111 is 31.

The logical XOR operator (^) copies the bit, if it's set in one operand, but not both.
It's somewhat similar to bitwise or, but in case of both bits being 1, it will not
activate and set the result to 1.

The first bit is not printed, since it is zero 0. So the result is basically 01110.

Python Summer School 17

Membership operators
Membership operators test for membership in a sequence, such as strings, lists, or
tuples. I.e., if our goal is to test if a element is contained in a list, tuple or string.
There are two identity operators, in and not in.

IN evaluates if the variable is contained in the desired sequence, string, list,
dictionary...

Similarly, we use not in, which return True is the variable IS NOT in the sequence,
and False if the variable IS IN the sequence.

Identity Operators
Identity operators compare the memory locations of certain object, meaning they
do not test if the two object are equal in value, or size, moreover they test if two
objects have same location in the memory. The identity operators are is and is not.

Python Summer School 18

IS returns True if the objects on the left and right of the operator point to the same
object in memory.

Since list are mutable objects, meaning, elements can be added, or elements can
be removed from the list using the assignment statement. the examples x1, y1 and
x2, y2 contain integers and string, respectively, which are immutable, meaning they
once assigned, can not be changed, therefore they also share the same place in
the memory.

Chapter 5. - Control flow

Introduction
First and foremost, what is Control Flow? Well, in simple terms it is the order in
which certain operations are executed. Let's take a simple example, say we want to
measure the air temperature outside. What do we need to do? First we take the
thermometer, then we open the door, we go outside, we close the door, we find a
place in the shadow, we measure the temperature, we write it down, etc.

Similar, in programming, if we want to do a specific task or operation, we need to
do simple smaller steps. These steps can for example include decision making or
repetition of a task for a given number of times.

Let's say we wanted a script that according to some criterion executes differently,
for example, if we measured the air temperature is 3°C it prints out "It's cold
outside", but if it's 21°C it prints out "It's warm outside". In this case, some

Python Summer School 19

condition is checked, and according to the condition, a task is executed (a certain
statement is printed out).

Or let's say we wanted to convert the measured air temperature on each weekday
in degrees Celsius to Fahrenheit. Then we need a script that takes the measured
temperature on each weekday and executes the following the formula:

🔥 (°C * 1.8 + 32 = °F

This means we do a similar task for a known number of times, precisely seven
times. We take seven numbers and multiple each by 1.8 and add 32 to it.

Let's now see some of the examples in more detail and with code provided. 🙂

Conditionals or Conditional statements
Conditional statements, or often called if-then statements, allow us to execute a
piece of code depending on some condition Boolean condition).

Conditional statements in Python are:

Simple if

if-else

nested if

if-elif-else

The keywords (symbols) to apply a conditional statement are if, elif, else and a
colon (:). It's important to indent the new line after a colon.

Simple if statement:
Let's visualize the simplest case.

Python Summer School 20

If the if statement expression evaluates to True, then the indented code following
the statement is executed. If the expression evaluates to False then the indented
code following the if statement is skipped and the program executes the next line
of code which is indented at the same level as the if statement.

We declare the variable x to be 10. We check if x is greater than 5, since this
statement is True 10 > 5, the print command get's executed, and the sentence "X
is greater than 5!" is printed out.

What about the case when this statement is not True? Then, this script would do
nothing.

If we wanted a script that does something when the statement is False we need to
modify it a little.

if-else statement
As mentioned above, this statement allows us to add a second possibility to the
script, what to do when the condition is False.

Let's visualize this case.

Python Summer School 21

The indented code for the if statement is executed if the expression evaluates to
True. The indented code immediately following the else is executed only if the
expression evaluates to False. To mark the end of the else block, the code must be
unindented to the same level as the starting if line.

The above code checks if the entered temperature is above 15, if the statement is
True, it prints out that we don't need a jacket, but if the air temperature is bellow
15, the script suggests to take a jacket.

Now we know that if it's above 15 °C we don't need a jacket, but what shirt to take,
short or long sleeved? In order to answer this question with our script we need to
use a nested if statement.

nested if statement
Basically that's an if statement inside an another if statement. Let's see is
visualized, to get a better understanding.

Python Summer School 22

As before, the code checks if the air temperature is above 15°C, if the statement is
True, it suggests that we don't need a jacket. Next it checks if it's bellow or equal
to 20°C, if that's True, it suggests a long sleeved shirt. If that's False, so it's
warmer than 20°C, it suggests a short sleeved shirt.

This example can also be solved using a if-elif-else statement. Let's see how.

if-elif-else statement

Python Summer School 23

The elif keyword can be thought as else if, we used it if we want a more distinct
division between if and else. The Python elif statement allows for continued
checks to be performed after an initial if statement. An elif statement differs from
the else statement because another expression is provided to be checked, just as
with the initial if statement.

If the expression is True, the indented code following the elif gets executed. If the
expression evaluates to False, the code can continue to an optional else
statement. Multiple elif statements can be used following an initial if to perform a
series of checks. Once an elif expression evaluates to True, no further elif or the
else statement is being executed.

The code first checks if the air temperature is bellow 15°C, if True, it suggests
taking a jacket. If False, it checks if it's bellow or equal to 20°C, if True, it suggests
a long sleeved shirt. If both statements are False, the else statement gets
executed, and it suggests taking a short sleeved shirt.

Python Summer School 24

Loops
Or often referred as repetition statements, are used to repeat a block of
instructions. In Python, there are two types of loops:

for loops

while loops

for loops
For loops are used when we iterate over a sequence of data, i.e. a list, tuple,
dictionary, string etc. They are used when we iterate for a known (or desired)
number of times, since we know how many elements there are in a list or string.
The keywords to apply a for loop are for and in.

This visualization shows a simple for loop workflow. We initialize a sequence (list,
string, tuple...), the loop checks if the item is the last, if True the loop stops, if
False the code gets executed and the loop repeats on next item in the sequence.
Until the code gets executed for the last item, the loop will repeat itself.

Let's see an example. We will calculate air temperature in Fahrenheit for an week of
Celsius degrees measurements. Therefore we declare a python dictionary which
holds the weekday as key and the measured daily air temperature as value.

Python Summer School 25

When we loop over a dictionary we use the .items() method, which returns the k
(key) and v (value). Next, we create a new variable called temp_f which holds the
calculated temperature in °F. To print out the calculated temperatures we use the
string format method. This method converts the given variable to a string and
allows us to use it in a sentence. We have to use curly braces {} on the wanted
location in the sentence.

🔥 "The air temperature on {} was {:.2f}°F."

After the sentence (string), notice the quotation marks, we apply the .format ()
method. We provide the variables we want to print out in the sentence, in this
case, the k (weekday) and temp_f (calculated temperature in Fahrenheit). The
:.2f means we convert the calculated value (float) to a string, with 2 decimal places
after the decimal point. Check the official sites for more insights.

🔥 .format(k, temp_f)

The great thing about loops is, we need to do this once, but the loop will repeat for
each weekday and execute the wanted task.

while loops
In Python, while loops are used to iterate until a certain condition is satisfied.
Basically, the loop is executed as many times as the condition remains True. when

https://docs.python.org/3/tutorial/inputoutput.html

Python Summer School 26

if becomes False, the loop stops. Let's clarify this statement with a simple
visualization.

A simple while loop works as follows. The argument gets evaluated, according to a
expression, the code gets executed until the argument is evaluated as True. When
it becomes False, the loop stops.

🔥 VERY IMPORTANT In every step of the while loop we need to change the
argument in order to avoid an endless loop.

Let's see an example with counting days.

Python Summer School 27

We start with day equal to one. The argument (value of the variable day) is
checked if it's lower or equal to eight, if True, it gets printed out. After printing we
increase the value of the variable day by one to avoid an endless loop. If we
hadn't increased day by one in each loop, the variable day would have stayed
equal to one, and so less than eight and the loop would have been endless.

Controlling loops with Breaks and Continues
The break and continue statements help us fine tune our loops and their
execution.

The break statement breaks-out of the loop entirely

The continue statement skips the remainder of the current loop, and goes to
the next iteration

Both of them can be used in both for and while loops.

break statement
The break statement is used in situations where we want to break out of the loop,
even if the condition has not become False or we have iterated over the entire
sequence. Also, if break is used, any following else blocks are not executed.

Python Summer School 28

Let's take a simple example with our air temp measurements in a week. Let's say
we want to stop printing out temperature values, if the air temperature is equal to
or higher than 18°C.

The code prints out temperature values, when we reach Friday, with a temperature
of 18.9°C, the loop breaks, and stops.

Continue statement
The continue statement is somewhat similar to the break statement, but instead of
breaking the loop, it will start the next iteration. Let's see the visualization, to get a

Python Summer School 29

clearer understanding.

Let's say we have a case where we want to print out temperatures but exclude
those that are lower than 15°C. This would mean, we print out all except the values
for Thursday. For such a task we would use a continue statement. So we loop
through the dictionary, and when we reach a temperature that is lower than 15°C,
the continue statement is activated, and it avoids the execution of the print
statement, instead, it jumps to the next iteration. Let's se the code.

Python Summer School 30

The continue statement is great for discarding or excluding tasks, where our goal is
to avoid a value, group of values or a certain condition.

Chapter 6. - Numpy
Why to use Numpy? When printed, a Python list of integers or floats, looks exactly
the same as a Numpy ndarray. Both can do mathematic operations on a bunch of
numbers, both can do statistical calculations and comparisons can go on... So you
could think Numpy is just a mathematical library with similar functionality as lists,
but is it? Let me explain...

The data in Numpy arrays is of homogeneous type, meaning all the data in an array
is of same type, while lists are just pointers to objects, even though all the data is
of the same type. As a consequence, the Numpy arrays use much less memory
than regular lists. Also, most of the Numpy operations is implemented in the C
language, meaning, the cost of Python loops and dynamic checking of the data
type is avoided. This, yields a significant increase in processing speed when
comparing Numpy to a Python list.

More often than one we encounter large datasets with tens of thousands rows of
data, just think of hourly air temperature measurements for a county or region
since the measurements beginning in this region. If your weather service is
measuring hourly air temperature for last 50 years, that's more that 400 000 rows
of data, just for one station.

How to install Numpy?

Python Summer School 31

Well, if using Anaconda, Numpy is preinstalled in the base environment. However,
more often than not, it's good practice to create new environments for new
projects. TO install Numpy, we run an Anaconda prompt and type:

conda install numpy

or

conda install -c anaconda numpy

If pip is being used, Numpy can be installed by typing:

pip install numpy

How to import Numpy?
When importing certain libraries, including Numpy, we follow a convention,
basically this means we use well established abbreviations for libraries. In the case
of Numpy we use "np".

import numpy as np

The goal is that our code is reproducible, and every Python programmer in the
World, knows what the following line does:

a = np.array([3,4])

Congrats, if you have imported Numpy, and used the above command, you have
successfully created your first Numpy array. Let's see what happens if we print it
out.

Print gives us something that looks like a list, but it's not. When we check the type
we see that's a "numpy.ndarray".

Python Summer School 32

Vectors?
In the example we saw how we can create an 1-dimensional array. If you remember
vectors from Math, well a 1-dimensional Numpy array is basically a vector. Since
we gave two numbers, 3 and 4, this vector lies in the 2-dimensional space
(geometric plane). It's same as in math when you had a vector:

💡 v= 3i + 4j

In Computer Science, vectors are just lists, where the length of the list (in our case,
2 is the number of dimensions of the vector. And in Data Science terms, a vector
represents one or multiple features of and object. Think of meteorological
measurements on Monday, you could measure air temperature, precipitation, wind
speed, snow depth, etc. To learn more about vectors, I highly recommend this
video by 3Blue1Brown.

Creating arrays
Above we already saw how to create a simple 1D array in Numpy. Often, our data
comes in more dimensions, we have multiple features (like above), but also have
measurements for multiple days in the week. In this case, we need to add a second
dimension to our arrays. Let's see some 2D arrays.

https://www.youtube.com/watch?v=fNk_zzaMoSs&t=93s

Python Summer School 33

To create a 2D array, we provide a list, containing two lists. Think of this array as
measurements on Monday (first list/row) and Tuesday (second row/list) where 1st
column is air temperature, 2nd column precipitation, 3rd column wind speed and
4th column snow depth. The excel screenshot should clarify things.

Numpy also provides some useful functions to create arrays of zeros or ones. Try
out the following commands by yourself, and print out the results.

zeros = np.zeros([2,3])

ones = np.ones([3,4])

To demonstrate how to get the number of dimensions of your newly created array,
I will use the np.ones function together with the ndim attribute.

ones = np.ones([2,3,4,5])
ones.ndim

4

So, our array has four dimensions, but how does a 4-dimensional array look like?

Python Summer School 34

If we take a closer look, we can determine the number of dimension if we count the
square brackets on the start or the end of the array also, a handy hack 🙂

Another useful method is arange. It is used to get an evenly spaced array. We
need to specify the end number (int or float).

range_a = np.arange(7)
range_a

array([0, 1, 2, 3, 4, 5, 6])

Numpy then assumes that starting point is zero. We can also provide the starting
and ending point.

range_b = np.arange(7.,12.)
range_b

array([7., 8., 9., 10., 11.])

Python Summer School 35

And, we can specify the step as follows:

range_c = np.arange(7,12,2)
range_c

array([7, 9, 11])

Similarly, with the method linspace we can create an array, but instead of the step,
linspace takes the number of elements in the array. Here we create an array with
five elements between 7 and 12. Also, contrary to np.arange and most of Python
methods, the last number (ending number) here is including.

range_d = np.linspace(7,12,5)
range_d

array([7. , 8.25, 9.5 , 10.75, 12.])

Shape and Reshape
Before, we checked how many dimensions (or axes) our ones array had. But what if
we are interested in how many elements are in each of the dimensions? The shape
attribute comes in handy. Since we have 4 dimension, we get a tuple of 4 numbers.

To count the number of elements in the whole array we use the size attribute.

In order to change the shape of an array, we use the .reshape() method. Care has
to be taken though, the newly reshaped array has to be of same size as the old
one. Let me explain..

Python Summer School 36

The original zeros array had the shape of 2, 3, and we can reshape it into 3,2,
6, 1 or 1,6, since it has a size of 6 elements. I shall mention, that in case of
reshaping it to 6, 1 or 1, 6 we change the number of dimensions, from a 2D
array, to a 1D array, but as long we take care of the array size, we are on the safe
side.

A handy "shortcut" to a 1D array are the flatten() and ravel() methods. The
difference is that flatten creates a 1D copy of the original array, while ravel
creates a reference to the original array. So, using ravel() has the consequence that
changing for example some of the data in the newly created array while also
change the data in the original array.

The usage depends on the specific task, most of the time I've used the flatten()
method.

Last but not least, let's not forget the transpose() method. This method simply
swaps the rows and columns of an array.

In this case, the result is same as before with reshape. In case of a
multidimensional array, all dimensions get swapped, let's see.

Python Summer School 37

Accessing elements and slicing an Array
Until now, we saw how to create, find proportions and reshape or flatten an array.
Let's turn our focus now on data extraction from an array using indexing and
slicing. To slice an array means to access it's elements by providing the desired
elements index.

The default syntax of slicing involves the array name and square brackets, like for
Python lists, as follows:

array_name[start_index : end_index : step_size]

In our array the temperature measurements start from 100. To clarify the things,
we printed out hourly temperatures at 1200, 1400, 1600, 1800 and 2000.

If we don't define the step size, every element in the specified range get returned.
For example if we need the hourly temperatures from 700 to 1200.

As usual in Lists, so in Numpy also, the start_index is including, while the
end_index is not including. Also, the first index in an array is always zero. So to
access the temperature at 700, we input 6-th index. And since we need the
measurements until 12 (which is at index no. 11, we provided 12th index (it's
excluding).

Slicing 2-D arrays
When slicing a 2D array, we need to specify the row and column of the element
we desire. It can be a little tricky at first, but when tried on few examples, it's soon
gets really easy.

Python Summer School 38

The syntax to slice a 2D array is as follows:

array_name[row_start_index : row_end_index : row_step_size,
 column_start_index : column_end_index :
column_step_size]

To see how slicing a 2D array works, I will first extend our weather_data array to a
full week, so we shall get an array of shape 7,4.

 Let's say we want to know the weekly precipitation. So we need to slice out all
rows, and the 2nd column.

In this case, to select all the rows we use a colon sign (:). To select the 2nd column
we use the index value of 1 (remember, indices start from zero).

Feel free to try out other possibilities, I would compare slicing with integrals in
Math, there are certain rules to follow, but practice makes perfect.

Negative slicing is also allowed, and works in same manner as with python lists.
The last item in an array has the index of 1.

"Finding" data in an array
Another way of finding data in an array is by using a very popular function inside of
Numpy, np.where(). The function returns the indices of elements that meet a
condition. Commonly, it's used when finding elements that are greater, equal or
less then a number. The basic syntax of np.where() is as follows:

np.where(condition [, x, y])

Python Summer School 39

x and y are parameters which can be used to replace the value in the array that
meets the given condition. Either we don't provide x, y (we just need to find
indices or values that meet the condition), or we provide both x, y then the values
at the found index get changed by x if True, or y if condition is False. Very similar
like IF function in MS Excel.

Let's say we want to print out the indices of days that were warmer than 14.5
degress °C.

We have two important things here: firstly, we use the above learned slicing to
select the first column (all rows, since we search all weekdays), and then we set
the condition > 14.5.

Let's say we want to convert all temperature values greater than 14.5 to Fahrenheit
degrees, and store the resulting array to the variable weather_b.

Again, we first provide a condition (14.5 °C, then we give what value (multiply
the value by 1.8 and add 32 to use if True, and what value (use the existing value)
to use if False. Notice, that we always slice the array, since we work only on the
first column.

We can now create a new array called weather_f (identical to weather_data) but
the temperature values will be replaced with values in Fahrenheits.

Python Summer School 40

First, we make a copy of weather_data (remember flatten() and ravel() methods),
to avoid changes in original weather_data array, and then we slice the new
weather_f (first column), and replace the values with the ones calculated in
weather_b.

Maths and Statistics with Numpy
Finally we've come to my favorite part of Numpy, mathematical and statistical
operations. This is in my eyes what makes Numpy so great, and superior to same
operations with common lists. It's the simplicity and speed advantage when
dealing with a great amount of numerical data. Let's first take a look to
mathematical operations. I will provide an example with division, but the general
syntax is the same for other operations, and can be looked up at the official Numpy
pages.

Our weather_data array contains precipitation data in millimetres, lets convert
those to metres. To convert millimetres to metres, we need to divide the value by
1000.

Again we use slicing, to select the second column of the array, and divide the
values by 1000. For practice, try to replace precipitation values from the array
weather_f with the ones converted to metres. (you can do the change on the
weather_f array directly)

As for the statistics example, I shall use the most common case, we need to
calculate the average temperature, precipitation, wind speed and snow depth
values for the week. The Numpy function to calculate the average values is called
np.mean(). The basic syntax of np.mean() function is as follows:

np.mean(a, axis=None, dtype=None, out=None, keepdims=<no
value>, *, where=<no value>)

For our case, the important part is the axis. Since our goal is to calculate the mean
values for each column, we need to set the axis parameter to 0. Setting the axis to
1, would yield the result row-wise.

https://numpy.org/doc/stable/reference/routines.math.html

Python Summer School 41

Other statistical functions retain an equal or similar syntax, and can be looked up at
the Statistics section of the official Numpy site.

Bonus content - Speed advantages of Numpy
I've mention that Numpy also has some speed advantages, this probably got you
tempted. Let's see that in action. Is Numpy really that faster than an for loop?

First, we will create an random array of floats, let's say its hourly air temperature
measured at some location in th US. The length of the array is 30 000.

We want to convert those numbers to Celsius degrees. Let's measure the time
needed using a for loop and Python list, and then using Numpy.

So, the time taken using an loop over a Python list took around 5 ms, while using
an Numpy array the same operation took less than 1 ms. So Numpy is in this
specific case around 5 times faster. Also, please consider that this test is not
completely applicable, it really depends on the speed of your computer CPU and
the chosen task. Since this is not the main topic of the article, I'll leave it to you to

https://numpy.org/doc/stable/reference/routines.statistics.html

Python Summer School 42

check other articles that are covering speed benefits of Numpy, and hopefully, try
it out yourself, on your specific task with your data.

Chapter 7. - Pandas
What is Pandas? Pandas is an extremely popular library built upon Numpy, for
handling tabular data, data manipulation and analysis. Probably the best thing
about Pandas is that it stores data as a Python object with rows and columns, very
similar to data stored in Excel files. Also, this way we can easily visualize our data,
making our job a lot easier then handling data in form of lists or dictionaries. Also,
the advantage over Numpy is that it handles multiple data types (i.e., strings), not
only numerical data, although I need to mention the downside, this makes it slower
in comparison to Numpy.

How to install Pandas?
Well, if using Anaconda, Pandas is preinstalled in the base environment. However,
more often than not, it's good practice to create new environments for your new
projects. To install Pandas in a new environment we activate the environment and
then we type:

conda install pandas

If pip is being used, Pandas can be installed by typing:

pip install pandas

How to import Pandas?
When importing certain libraries, including Pandas, we follow a convention,
basically this means we use well established abbreviations for libraries. In the case
of Pandas we use "pd".

import pandas as pd

Pandas Series and Pandas Dataframe
Before we start dealing with some of Pandas' tools, we need mention the two data
structures Pandas uses to store data, the Pandas Series and the Pandas
Dataframe. Think of Pandas Series as an 1 column Excel spreadsheet, with an

Python Summer School 43

additional index column, or even better, if you are familiar with Numpy think of an
one dimensional array.

Imagine daily meteorological observations at a point location, for example wind
speed for the period of two weeks. Let's see an example.

We use the pd.Series() command, and provide a list, in this case a list of floats
with a length of 14.

When printed, we also get the indices of each element in the Series.

We also can create a Series from an 1-dim Numpy array. For the sake of efficiency,
I shall use the same list of wind speeds.

array = np.array([0.5, 1.2, 2.1, 1.1, 1.6, 1.8, 1.4,
 0.6, 0.4, 0.3, 0.9, 2.5, 2.1, 2.8])

wind_speed_b = pd.Series(array)

Try printing out the newly created Series, and compare it with the previous result.

You may think now, what if we have multiple Series, what if we also have for
example precipitation measurements, well then, Pandas stores our data in a
Dataframe. I'm pretty sure, you get the point, a Dataframe is just a container for
multiple Series. Think of it as an Excel spreadsheet with multiple columns, and one
index column, or as an N-dimensional Numpy array. Let's see an example.

Python Summer School 44

array_ws = np.array([0.5, 1.2, 2.1, 1.1, 1.6, 1.8, 1.4,
 0.6, 0.4, 0.3, 0.9, 2.5, 2.1, 2.8])
array_precip = np.array([0., 0., 5.8, 4.3, 2., 1.1, 0.,
 0.7, 0.9, 1.3, 1.9, 6.5, 8.2, 1.8])
array_temp = np.array([11., 12.1, 12.2, 12.7, 10.8, 9.7, 13.2,
 12.8, 12.6, 14.1, 14.8, 15.3, 14.4, 16.2])

weather_df = pd.DataFrame({"wind_speed": array_ws,
 "precipitation": array_precip,
 "temperature": array_temp})

To create a Dataframe we use the pd.DataFrame() command, and provide a
dictionary where the keys represent our column names, and the values are the
before created Numpy arrays (our data).

Looks kind of similar to an Numpy N-dimensional array. Each Pandas DataFrame
consists of following components: index, columns and data (values). The indices
are the labels ("names") of each row, while the columns also have their labels
("names"). The indices always start with a zero 0 up to n-1, where n is the
number of rows.

Python Summer School 45

This DataFrame contains only floats (numbers), but any data type is allowed
(integers, strings, Booleans..), although if combining multiple data types inside a
column, care has to be taken.

To avoid, unexpected behaviour, we can also specify the column data type as
follows:

weather_df = pd.DataFrame({"wind_speed": pd.Series(array_ws, dtype="float"),
 "precipitation": pd.Series(array_precip, dtype="float"),
 "temperature": pd.Series(array_temp, dtype="float")})

You can also use the pd.Series() command with a dictionary, if you want to name
the created Series.

There are a lot more options and possibilities of creating Series and DataFrames,
you can find those on the official Pandas sites. But When working on Data Science
or Data Analysis tasks often we have to deal with large datasets, stored as comma
separated values (.csv) or Excel spreadsheets (.xlsx). Let's see how to read such
files into a Pandas Dataframe .

https://pandas.pydata.org/docs/user_guide/index.html#user-guide

Python Summer School 46

Reading data
To read a .csv file, we use the pd.read_csv() command. When files are properly
formatted, Pandas figures out which separator, column names, data types etc. are
present in our data. All of the mentioned can also be provided, and many more
arguments can be added to pd.read_csv(), in order to widen the possibilities of
reading differently formatted files. Also, providing the dtype argument for each (or
some) column(s), significantly improves the speed of reading the file but also
lowers the memory usage by quite a margin, find out more in this great article.

To see how pd.read_csv() works, I've created a dataset with some meteorological
observations for entire year 2018 which we are going to read in as a Pandas
DataFrame and work on. To visualize the newly created DataFrame Pandas offers
some handy methods, df.head() and df.tail() (df stands for the name of our
dataframe, in our case, weather_data).

weather_data = pd.read_csv("test_data.csv")
print (weather_data.head())
print (weather_data.tail())

Here, few things are important: we need to make sure that out test_data file is in
the same folder as our Jupyter notebook (or .py file) and second that we
correctly spell the name of the file, and also provide the extension .csv.

 The .head() method prints out the first 5 rows (by default, we can change by
entering any integer in the brackets), while .tail() prints out the last 5 rows (also by
default).

In same manner as for .csv files, we can also read Excel files.

weather_excel = pd.read_excel("test_data.xlsx")

https://towardsdatascience.com/please-stop-doing-these-5-things-in-pandas-9fbabea897aa

Python Summer School 47

Sometimes, an error can occur, "XLRDError:Excel xlsx file; not supported", then
make sure to install the openpyxl library to your environment of choice, and use
the command:

weather_excel = pd.read_excel("test_data.xlsx", engine="openpyxl")

I've used a basic example of reading comma separated value files, or Excel files,
but make sure that you check the official documents (for .csv here, and for .xlsx
here) of Pandas to find out all the arguments we can use with those two methods.
Also, you can check one of my previous articles on opening and processing not so
nicely formatted files with Pandas.

Inspecting data
After we have successfully read the data, we need to take a closer look at our
DataFrame. We already printed first 5 and last five rows, but what about the rest?
It's allways good practice to check the shape of your dataframe, similarly, like we
did for Numpy ndarrays. Therefore, we use the df.shape method, which returns the
number of rows, and columns of the DataFrame.

The dataframe has 365 rows, and 5 columns, since the year 2018 had 365 days,
and we have observations for each day. Also, we have a date column, and 4
different observations.

We can get even more information about our dataframe by using the df.info()
method, which yields the length, number and data type of he columns, and the size
in the memory.

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html
https://medium.com/analytics-vidhya/how-to-extract-time-series-data-from-tabular-strings-e5b2d83fc711

Python Summer School 48

In Hydrological (and Meteorological) tasks, we are often interested in statistical
parameters of our dataset, Pandas has a solution for this problem to. It provides
the most commonly used statistical parameters as methods, mean, median,
minimum, maximum, skewness etc. Let's see a few examples.

Interestingly, df.max() also evaluates the object type column with the dates. Since
we have not converted the dates to the datetime format, the maximum value is not
12/31/2018, but rather the maximum of a string, and that's 9, so 9/9/2018. In order

Python Summer School 49

to convert the dates to the datetime format (which Python then evaluates as real
dates) we use the pd.to_datetime() functions, as fallows:

weather_data["date"] = pd.to_datetime(weather_data["date"], format="%m/%d/%Y")

Try now, to print out the first 5 rows of the dataframe, and compare it to the
previous example, before we converted the dates to datetime format. Also, we can
see a change in the data type of the columns.

Let's now go a step further, and learn to select certain parts of the data from our
weather_data dataframe.

Selecting data
To select data from a DataFrame, we have several options, like i.e. using square
brackets [], the .loc[] or the .iloc[] functions. There are certainly more
possibilities, but those three should cover most of our needs.

Square brackets
Using the square brackets, we can either select one (returns a Pandas Series) or
multiple columns (returns a Pandas DataFrame). Let's say we are only interested in
the precipitation data.

Python Summer School 50

Or as mentioned, we can also provide a list of column names inside the square
brackets, which then returns a new DataFrame.

It is also possible to select data by providing the indices to the square brackets,
but this method is not very often used.

.loc[]
The .loc method works in a bit different way. It's meant to select data by the index
label, also, the data type depends on the index data type of the DataFrame on
which we work on. We use it like follows:

Python Summer School 51

It also works with DataFrames with other types of indices (string, datetimes, etc.).

Selecting only one index label, returns a Series. Selecting two label, or a subset,
returns a new DataFrame.

Please notice, that when providing multiple labels, we need to store them in a list
(hence the double square brackets). Also, .loc includes the last values, opposite to
indexing a list for example.

With .loc we can also select multiple rows and columns!

Python Summer School 52

So, .loc can only be used with labels (integers, strings, datetimes...), it can select
rows, but also columns and we can provide the selection as single label, subset or
a list.

.iloc[]
The .iloc method works very similar to the .loc method, but it only supports integer
locations of the row. (whatever the data type the index of the DataFrame is, .iloc is
selecting data by the integer location) Using only one value (index) will return a
series, while using multiple indices or a subset will return a DataFrame.

Python Summer School 53

.iloc also can be used to select columns simultaneously, but in the same manner as
for rows, by their integer location. Let's take a look.

So in the above example we have selected the 7th, 8th, 9th and 10th rows, and 1st
to 3rd column. (both the counting for rows and columns tart from zero)

Python Summer School 54

Simple plots with Pandas
It's good to get the statistics for the data, and to know how to select certain parts
of the DataFrame, but it's certainly nice to see some graphical interpretation of the
dataset. So, as a final step of data exploration, let's take a look to simple plots with
Pandas. For this example, let's plot out the wind speed for January 2018.

We can also plot multiple columns, let's now see how warm (or cold) was the
summer of 2018.

It is worth mentioning, that those plots, can be done by other ways of selecting
data, can you think of any? Try it out, by yourself.

Python Summer School 55

Precipitation is mostly plotted, as a bar plot. Since for this location, the Fall is in
most cases pretty rainy, let's see how rainy it was 2018, by plotting the
precipitation in September and October as a bar plot.

We are not plotting as a bar plot, but the "step" argument is a nice workaround to
get nice barplot like plots, without messing around with the labels. 🙂

Chapter 8. - Matplotlib
Matplotlib is one of the most popular data visualization libraries in Python. It allows
us to create figures and plots, and makes it very easy to produce static raster or
vector files without the need for any GUIs.

Installing Matplotlib
If you have Anaconda, you can simply install Matplotlib from your terminal or
command prompt using:

conda install matplotlib

If you do not have Anaconda on your computer, install Matplotlib from your terminal
using:

pip install matplotlib

http://anaconda.com/

Python Summer School 56

Now that you have Matplotlib installed, let’s begin by understanding the anatomy
of a plot.

We will begin by importing Matplotlib using:

import matplotlib.pyplot as plt

Now that we have Matplotlib imported, we need to be able to display the plots as
it’s being created. If you’re using the Jupyter notebook we can easily display plots
using:

 %matplotlib inline

However, if you’re using Matplotlib from within a Python script, you have to
add plt.show() method inside the file to be able display your plot.

Anatomy of a plot
There are two key components in a Plot; namely, Figure and Axes.

Python Summer School 57

The Figure is the top-level container that acts as the window or page on which
everything is drawn. It can contain multiple independent figures, multiple Axes, a
subtitle (which is a centered title for the figure), a legend, a color bar, etc.

The Axes is the area on which we plot our data and any labels/ticks associated
with it. Each Axes has an XAxis and a YAxis (like in the image above).

Functional approach to plotting
It's the more basic approach to plotting in Matplotlib. To see a simple plot, we will
load a .csv file with some weather data.

weather_data = pd.read_csv("test_data.csv")
print (weather_data)

Our data contains daily precipitation, minimum and maximum air temperature and
wind speed. For the sake of this example, we will print precipitation values for
January 2018.

precipitation_data = weather_data[["precipitation"]][:31]

This means, we need to use slicing on the Pandas Dataframe to select the first 31
entries.

plt.plot(precipitation_data["precipitation"])
plt.plot()

Python Summer School 58

We select the desired column for the dataframe, in this case, precipitation. We
could have just plot the entire dataframe, in this case, since we only had 1 column,
the result would've remained the same.

Let's modify our plot a bit. We will add a tittle, and axis labels.

plt.plot(precipitation_data["precipitation"])
plt.title("Daily precipitation - January 2018")
plt.xlabel("Days")
plt.ylabel("Precipitation [mm]")
plt.plot()

The functional approach is often used when we need a fast and simple plot, for the
sake of data visualization. But more often than not, we need specific, plots, with
predefined resolution, sizes etc.

Object oriented Interface
This is the best way to create plots. The idea here is to create Figure objects and
call methods off it.

fig, ax = plt.subplots()
ax.plot(precipitation_data, label="Precipitation")
ax.plot()

Fig defines the figure, where one (or more) axes are plotted. .subplots() method
can take multiple arguments, for example we can define the size of figure, by
specifying the figure size, aspect ratio, and DPI by simply specifying the figsize

Python Summer School 59

and dpi arguments. The figsize is a tuple of the width and height of the figure (in
inches), and dpi is the dots-per-inch (pixel-per-inch).

fig, ax = plt.subplots(figsize=(10,6), dpi = 300)
ax.plot(precipitation_data, label="Precipitation")
ax.plot()

Also, by using the .subplots() method, we can define the number of axes we need.

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12,4), dpi = 300)
ax[0].plot(precipitation_data, label="Precipitation")
ax[1].plot(weather_data["wind_speed"])
ax[0].legend()

We have defined our figure to have 1 row, and 2 columns, meaning, we have now 2
axes. Also, we have introduced the .legend() method, which is used to display the
legend on the desired axes. Before using the .legend() method, we need to provide
the labels for the data we plot.

Scatter plots
Scatterplots offer a convenient way to visualize how two numeric values are
related in your data. It helps in understanding relationships between multiple
variables. Using .scatter() method, we can create a scatter plot:

fig, ax = plt.subplots(figsize=(8,4), dpi = 300)
ax.scatter(weather_data["min_temp"][:31], weather_data["max_temp"][:31])
ax.set_xlabel("Daily minimum air temperature [°C]")
ax.set_ylabel("Daily maximum air temperature [°C]")

Python Summer School 60

Bar plots
Bar graphs are convenient for comparing numeric values of several groups. First,
we will summarize our precipitation data for the year of 2018, across months, then
we will plot the monthly sums as a bar chart.

First, we need to resample our daily precipitation data, to monthly sums. To do so,
we will first set the index of the dataframe as DatetimeIndex. This means, we will
no longer have numerical indices 0, 1, 2, 3, ...), instead, we will have Dates. This,
allows us to use the .resample() method from Pandas.

precip_data = weather_data[["date", "precipitation"]]
precip_data.index = pd.to_datetime(precip_data["date"])
precip_data = precip_data["precipitation"]
precip_monthly_sums = precip_data.resample("M").sum()

Using plot.bar() method, we can create a bar graph:

fig, ax = plt.subplots(figsize=(8,4), dpi = 300)
precip_monthly_sums.plot.bar(label="Precipitation [mm]")
ax.legend()

Python Summer School 61

We can also modify the X-axis labels, a good practice for this kind of plot would be
to display the months.

fig, ax = plt.subplots(figsize=(8,4), dpi = 300)
precip_monthly_sums.plot.bar(label="Precipitation [mm]")
ax.set_xticklabels([x.strftime("%B") for x in precip_monthly_sums.index], rotation=45)
ax.set_xlabel("Months")
ax.set_ylabel("Monthly precipitation [mm]")
ax.legend()

Python Summer School 62

To alternate the Dates to display, we use .strftime() method, which converts our
Date, to a String, according to the provided format. I.e. "%B", to display is the
formatter for long month names, "%b" would be for short month names. For more
information regarding date formats take a look to the official sites of Matplotlib.
Here we use a list comprehension, to do this in one line. Another way to do this
would have been to first create a list called months.

Saving a plot
To save a plot from Matplotlib as a figure (i.e., .png or .jpeg) we use the .savefig()
method.

fig, ax = plt.subplots(figsize=(8,4), dpi = 300)
precip_monthly_sums.plot.bar(label="Precipitation [mm]")
ax.set_xticklabels([x.strftime("%B") for x in precip_monthly_sums.index], rotation=45)
ax.set_xlabel("Months")
ax.set_ylabel("Monthly precipitation [mm]")
ax.legend()
plt.savefig("Precip_bar_plot_M.jpg", bbox_inches="tight")

The .savefig() method takes the filename keyword. Also, we added
bbox_inches="tight" argument, to prevent part of the figure to be missing.

https://matplotlib.org/stable/gallery/ticks_and_spines/date_concise_formatter.html

Python Summer School 63

Chapter 9. - scickit.learn - Basics of
Machine Learning
If we take a closer look to the scatter plot of MIN vs. MAX daily temperature, in last
chapter, we can notice a somewhat linear correlation between the data. And,
indeed, we know that with the rise of maximum daily air temperature, during spring
and summer, also the minimum daily temperature rises. It certainly would be
interesting to see if we can use Linear Regression to describe the daily maximum
temperature according to the daily minimum temperature.

What is Linear Regression, and why is it so popular?

Well, first and foremost it's a very SIMPLE algorithm. It attempts to describe a
relationship between two variables with a straight line (a linear equation). If we
again look at the above plot, we can see that maximum is the dependent variable,
of the explanatory variable minimum temperature. Such a scatter plot is often
used as first step before investigating a relationships between two variables. So,
the approach assumes that every value of Y (maximum temperature) can be
described as a linear function of X (minimum temperature) following the simple
equation:

Where w is the slope of the line, and b is the y-axis intercept. Or in Machine
Learning terms, more often w is referred as weight and b for bias.

However, some assumption have to be taken into account:

 Linear relationship: A linear relationship between x and y has to exist.

 Independence: no correlation between consecutive residuals in time series
data

 Homoscedasticity: constant variance of residuals for every x

 Normality: the residual are normally distributed

What are these so called residuals? Well, a residual is the value (or deviation) of the
observed value from the fitted line. Basically, it is the distance (red line) of the blue
point from the fitted line (green line).

Y = w ∗X + b

Python Summer School 64

Least-squares error

By now, you probably ask yourself, how we calculate the w and b parameters? In
simple terms, the algorithm calculates the "loss", the summarized values of all the
residuals. Here the Least-squares error comes into play. It's a common approach
where the squared difference from the observed point to the fitted line gets
calculated, all these squared distances get summarized. The goal of the approach
is to find the w and b that yield the lowest possible sum of squared distances.
The sum of squared distances is often called the "Mean Squared Error" or MSE.

Let's see the example with air temperatures.

Dataset loading and description
First, we will import the dependencies, load the test weather data data and take a
look at the dataframe.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

we load the dataset
weather = pd.read_csv("test_data.csv")
weather.head()

Python Summer School 65

First, we select and reshape the explanatory variable (min temp), due to Scikit-
learn requirements of a 2D array, and since we only have 1 input feature,
.reshape(-1, 1 is used. Then the data is splitted into training and test samples,
using Scickit-learn's function train_test_split.

split the data into training and test sets
default is 75% / 25% train-test split

X = np.array(weather["min_temp"]).reshape(-1,1)
y = np.array(weather["max_temp"])
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

fig, ax = plt.subplots(figsize=(8,4), dpi = 300)
ax.scatter(X_train, y_train, label="Training", color = "r", alpha=0.5)
ax.scatter(X_test, y_test, label="Test", color = "g", alpha=0.5)
ax.set_xlabel("Minimum daily temperature [°C]")
ax.set_ylabel("Maximum daily temperature [°C]")
ax.legend()
plt.show()

Python Summer School 66

In the next step we prepare our model. Therefore, the LinearRegression function is
used, and fitted with the training data to train the model.

Create the linear model
linreg = LinearRegression()

Train the linear model
linreg.fit(X_train, y_train)

We can check the w and b parameters of the regression function by calling the
.coef_ and .intercept_ attributes. Also, the R-squared score is calculated by calling
the .score() method.

Next, lets check the regression parameters, training and test precision.

Check the regression parameters, training and test precision
print('Linear model coeff (w): {}'
 .format(linreg.coef_))
print('Linear model intercept (b): {:.3f}'
 .format(linreg.intercept_))
print('R-squared score (training): {:.3f}'
 .format(linreg.score(X_train, y_train)))
print('R-squared score (test): {:.3f}'
 .format(linreg.score(X_test, y_test)))

According to our model if we wanted to calculate maximum air temperature from
minimum temperature, we need to apply the following equation:

And let us plot the resulting linear regression on both training and test data.

Evaluation and plot of train data
fig, ax = plt.subplots(figsize=(8,4), dpi = 300)
ax.scatter(X_train, y_train, label="Training data", color = "g", alpha=0.5)
ax.plot(X, linreg.coef_ * X + linreg.intercept_, color = 'r', label = "Linear Regression")
ax.set_xlabel("Minimum daily temperature [°C]")
ax.set_ylabel("Maximum daily temperature [°C]")
ax.legend()
plt.show()

Y = 1.2242 ∗X + 8.328

Python Summer School 67

We calculate the predicted values according to test data by calling the .predict on
the test sample. And then, we evaluate and plot the test sample.

Evaluation and plot of test data
prediction = linreg.predict(X_test)

fig, ax = plt.subplots(figsize=(8,4), dpi = 300)
ax.scatter(X_test, y_test, label="Test data", color ="g", alpha = 0.5)
ax.plot(X_test, prediction, label = "Linear Regression", color = "r")
ax.set_xlabel("Minimum daily temperature [°C]")
ax.set_ylabel("Maximum daily temperature [°C]")
ax.legend()
plt.show()

Python Summer School 68

Now try to fit a minimum todays minimum temperature, and calculate, todays
maximum air temperature, and around 1400 we shall see if our model is correct.
🙂

You just provide a numpy array with todays minimum temperature to linreg.predict.

linreg.predict([[todays_min_temperatue]])

For temperatures around the middle of the distribution, our model should provide
more accurate results, but if we go towards the extremes, the model accuracy
slightly decreases.

Conclusion
So, we are on the end of our training. I hope you had fun and liked the provided
examples. This training should provide you a foundation on which you can continue
your journey in programing. Hopefully I could show you that Data Science can be
interesting and helpful in daily tasks.

